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ABSTRACT. We address the inverse light-scattering problem for particles described by
a several-parameters model, when experimental data are given as an angle-resolved light-
scattering pattern (LSP). This problem is reformulated as an optimization (nonlinear re-
gression) problem, for which two solution methods are proposed. The first one is based
on standard gradient optimization method, but with careful choice of the starting point.
The second method is based on precalculated database of theoretical LSPs, from which
the closest one to an experimental LSP is selected for characterization. We tested both
methods for characterization of polystyrene microspheres using a scanning flow cytometer
(SEC).

1. Introduction

The problem of single particle characterization from light scattering arises in different
fields. An effective solution of this problem requires measuring LSPs, performed, e.g.,
by the SFC [1]. We assume that LSP can be computed for any particle, defining a map
f: X - RY, where X C RP? is a domain of particle parameters and d > p. The inverse
problem consists in finding f~! : f(X) — X, which in most cases can be solved only
numerically. The most general approach is optimization defined for any LSP (including
noise) as

g:RY— X, 9(y) = argmin Ry (z),  Ry(z) = |ly - f(=)]|

Robust optimization techniques are required due to oscillatory nature of the LSPs. In
particular, stochastic global optimization techniques, multi-start Levenberg-Marquardt and
DiRect methods were applied to single- and multi-layered spheres, e.g. [2, 3]. This comes
at a great computational cost, which can be alleviated by using a preliminary exploration
of the particular map f.

We propose two such methods. The “continuous” method is based on detailed analysis
of the map f and its derivative, allowing one to rigorously construct a set of starting points
{#;} C X such that for any y = f(z) at least one of z; would be a “good” starting point.
The latter is defined so that the local minimization method starting from z; will lead to x.
The “discrete” method is based on a preliminary calculated database of theoretical LSPs
and approximating g using the nearest-neighbor interpolation. This approach was used
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previously, e.g. [4], but the issue of optimal structure and size of the database was not
discussed. Here we propose an adaptive algorithm for database construction, which aims
both at providing satisfactory local accuracy and at avoiding large errors of the inverse
map. Details of these results can be found in [5, 6].

2. Optimization methods

To construct a set of starting points {z;} for the continuous method we start with a
larger domain X; D X, and define several functions on X:

r(z) =sup{r > 0| B(z,r) C X1, Yu € B(z,r) (V. Ry(u),u —x) > 0},

where y = f(x), B(x,r) is the ball around = with radius r, and (-, - ) denotes the inner
product. The value r(z) is the maximal radius such that gradient optimization starting at
any point of the ball will lead to z. Let
t(x) = inf R,(u), s(x)=sup{s>0|VYue B(z,s) R,(u) < t(z)}.
()=, b Ry, () =supls > 0| Vu € Bla,s) By(u) < t(z)}
The ball with radius s(x) around global minimum « is deeper than any other local minima.
The cover zone for any starting point z is

C(z)={x € X |ze€ B(x,s(x))}.

A set of points {z;} is constructed iteratively until X C J; C(2;). Then it can be proven
that for any noise-free data y € f(X) starting point z; with the minimum residual R, (z;)
is a good one.

The algorithm for database construction in the discrete method is the following. We
use the same structure of the database as in DiRect method [3]. X is described by a set
of hyperrectangles, whose centers constitute the database. New points are added to the
database as a result of division of cells into three smaller hyperrectangles. We define N (z)
as a discrete set of neighbors in the database and fix the required accuracy €. The database,
set of pairs (x, f(x)), © € X4, is constructed iteratively until

Ve e Xq VueN(z) VoeXg\B(xe) [f(u)—f@)l<|flw)—=rf)

First, this condition implies that Vo € X4 N(z) C B(x,¢€), i.e. the database is sufficiently
locally dense. Second, it aims to sufficiently discretize those parts of X that may lead to
large errors of approximation of the map g.

3. Results for spheres
Both methods were applied for characterization of homogeneous spheres using the LSPs

measured by the SFC [1]
w(a) o 1 2 o
10)= 52 [ do [5u6.0)+ S1a0.0)]. w(6) = 7 exp (—212(0/58))
0

2T
in the range of # € [10°,70°]. The initial domain X for size parameter « and relative
refractive index m was chosen as [5, 40] x [1.05, 1.3]. The number of starting points for the
continuous method were 2458, while the number of LSPs in the database for the discrete
method were 9366.
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Figure 1. Distributions of a sample of polystyrene microspheres over « and
m, obtained by processing LSPs measured with a SFC by proposed methods in
comparison with reference DiRect method.

First, the methods were tested on synthetic data covering the whole X resulting in good
accuracy. Moreover, the methods proved resistant both to white noise (up to 20% ampli-
tude) and to shape distortions of the synthetic particles (spheres were replaced by spheroids
with aspect ratios between 0.9 and 1.1). Second, we applied both methods to real experi-
mental data for polystyrene microspheres in the buffer solution with refractive index 1.337.
According to the producer’s data, mean « of microspheres is 25 with coefficient of varia-
tion 4%. Relative refractive index of bulk polystyrene at this wavelength is 1.185. Here we
present the results only for experimental data—see figure 1. Typical computational time to

process one spherical particle on a 2.3 GHz processor is 0.02 s for both proposed methods
and 1.6 s for the DiRect.

4. Conclusion

We proposed two methods to characterize particles from LSPs. The continuous method
is better suited for shapes that permit quick simulation of LSPs, e.g. multi-layered spheres.
On contrary, the discrete method is preferable for non-spherical particles. They were tested
on synthetic and experimental data for spheres. However, we are currently working on
their application to more interesting cases, such as lymphocytes and erythrocytes. We will
present our first results in this direction at the conference.
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